
Hoffman2 Town Hall Meeting :: November 6, 2014


Agenda

- Introductions & state of the Cluster
- General Campus Users versus Contributors: What's the difference
- Storage and node service rates and what they cover
- Optimizing between HPC Storage and the Cloud Archival Storage System (CASS)
- Queuing system: Ten Top Tips
- Running jobs and HPC Storage information
- Q&A and Discussion Let us hear from you

State of the Cluster

- 1,180 nodes / 12,220 cores
 - 824 contributed nodes / 8,952 cores
- 1,672 active users
- 290 research groups
 - 66 contributing research groups
- 90%+ average utilization
- Campus now funds all non-labor Cluster costs \$359K
- Scheduled Winter maintenance: December 22 from 0600-1800
- CNSI Data Center decommission
 - Will be returned to the campus within 1 year
 - Nodes in CNSI will be end of life and will not be moved

General Campus Users versus Contributors

General Campus User

- Access to only IDRE-provided surplus cores (~3,000 cores)
- Can only run up to 24 hours
- Many other users in competition for resources
- 20GB of free storage per user

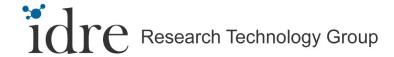
Contributing User

- Access to surplus cores on the entire cluster for 24 hours
- Priority access over General Campus Users
- Can run up to 14 days on contributed cores (longer runs by request)
- Guaranteed start time
- 20GB of free storage per user
- Either group can purchase additional storage in 1TB increments

Storage and Node Service Rates

- HPC Storage
 - Lower price for storage (\$350/TB/Yr. versus \$500)
 - Provides backup and no-backup options
- Compute nodes
 - Lower price per node (\$5,916.88 versus \$6,400)
 - Includes incremental IP network and Infiniband infrastructure
- Cloud Archival Storage Service (CASS)
 - Archival and backup storage
 - Multiple access methods (NFS, CIFS, iSCSI, Globus Online)
 - Multiple discounts up to 29.5%, federal and non-federal rates
- All are fully self-sustaining rates

CASS and Hoffman2


- HPC Storage is intended for active projects
- CASS is intended for archiving
 - Raw data
 - Inactive projects
 - Etc.
- Data transfers between CASS and Hoffman2
 - Use Globus
- Data transfers between CASS and your lab
 - NFS, SMB, iSCSI, Globus

Queuing System: Top Ten Tips

- 1. Memory size
- 2. Run-time limit
- 3. 1-CPU job should only use 1 CPU
 - Using more hurts other users sharing the same node
- 4. Use "job array" if submitting many jobs
- 5. Not every job can start immediately
 - Wait for resources to become available
 - High-priority vs. access to more resources

Queuing System: Top Ten Tips

- 6. h_data (memory size) is a per-slot value
- 7. (slots)*(h_data) must be smaller than RAM size
- 8. Make sure you have access to the nodes you request
- 9. Know when to submit high-priority jobs
- 10. Do not waste resources
 - Keep CPUs busy (doing useful computations)
 - Release resource as soon as you are done
 - Consider others in a shared environment

Running Jobs and Automatic Job Cleanup

- Jobs must be submitted through the queuing system
- Job monitoring based upon runtime, CPU consumption, and memory usage
- Completion of interactive processes (qrsh, abaqus, gaussview, etc.)

Hoffman2 HPC Storage

- Maximum of 10,000 files per directory
- /u/home vs. /u/project vs. /u/nobackup
- Migrating old /u/home sponsor's directories to /u/project or /u/nobackup
- Storage renewals

Q&A and Discussion