Learning from Big Data

TYSON CONDIE
UCLA
“Machine Learning is Programming by Example”

Used when:

Programming is hard (e.g. topic detection, bioinformatics)
Program changes all the time (recommender systems, antispam)
Machine Learning

Supervised
- Classification
- Regression
- Recommender

Unsupervised
- Clustering
- Dimensionality reduction
- Topic modeling

Big Data
- Big: TiB - PiB

Learning

Model
- Small: MiB - GiB
Machine Learning Workflow

Step I: Example Formation
Feature and Label Extraction

Step II: Modeling

Step III: Evaluation (and eventually Deployment)
Example Formation at Scale

Feature Extraction

EMail

ID

Bag of Words

Data Parallel Functions

Click Log

ID

Label

Label Extraction

Large Scale Join

ID

Bag of Words

Label

Example
Machine Learning Workflow

Step I: Example Formation
Feature and Label Extraction

Step II: Modeling

Step III: Evaluation
Modeling (30,000ft)

Learning is Iterative

Computational models

- Statistical Query Model: Algorithm operates on global statistics of the dataset through aggregations.

- Graphical Models: Algorithm operates on local (per-node) statistics of the dataset through message passing.

- Many more: Custom solutions

Apply Model to Data

Observe Errors

Update Model
Machine Learning Workflow

Step I: Example Formation
Feature and Label Extraction

Step II: Modeling

Step III: Evaluation

Cumbersome & Not scalable

Example Formation
Sample Features
Modeling
Copy Model
Evaluation
Distributed Learning

Machine Learning in MapReduce?

+ MapReduce model fits statistical query model learning

- Hadoop MR does not support iterations (30x slowdown compared to others)
- Hadoop MR does not match other forms of algorithms

“Solution”: Map only jobs

1. Allocate a set of map tasks
2. Instantiate learning algorithm
3. Execute iterative algorithm until convergence
4. Release mappers

➔ Hadoop Abuse
Hadoop Abusers 1: (All)Reduce and friends

Decision Trees on Hadoop
Jerry Ye et al.
- Runs OpenMPI on a map only job
- Uses HDFS for coordination/bootstrap

Vowpal Wabbit
John Langford et al.
- AllReduce on a map-only job
- Uses custom server for coordination/bootstrap
- Constructs a binary aggregation tree
- Optimizes node selection via redundant tasks
Hadoop Abusers 2: The Graph View

Apache Giraph
Avery Chen et al.
- Open source implementation of Pregel on a map-only job
- Uses Zookeeper for coordination/bootstrap
- Graph computation using “think like a vertex” UDFs
- Executes BSP message passing algorithm

Yahoo! LDA (YLDA)
Alex Smola and Shravan Narayanamurthy
- Instantiate Graphical Model on a map-only job
- Uses HDFS for coordination/bootstrap
- Coordinate global parameters via shared memory
Problems with this Approach

Problems for the Abusers

Fault Tolerance Mismatch
Resource Allocation Mismatch
Cumbersome integration with M/R
Every Abuser has to implement …
 Networking
 Cluster Membership
 Bulk data transfers
 ...

Problems for the Cluster

Abusers Violate MapReduce assumptions
 Network usage bursts in (All)Reduce

The Abusers are disrespectful of other users
 Hoarding of resources
Graph Analytics Systems
Processing Big Graphs

Options
- Create custom distributed infrastructure
- Just use MapReduce
- Use a graph library: BGL, LEDA, NetworkX

Problems
- Custom solutions do not generalize well
- MapReduce is not the right programming model
 - And it is inefficient!
- Graph libraries cannot handle problems at scale
Google Pregel

- Graph processing Framework
 - High scalability
 - Fault-tolerance
 - Graph-oriented programming model

- Inspired by Valiant’s Bulk Synchronous Parallel (BSP) model

- The Pregel name honors Leonhard Euler
 - The Bridges of Königsberg, which inspired his famous theorem, spanned the Pregel river
Bulk Synchronous Parallel Model
Pregel programming model

- **Model of Computation**
 - Input: a graph of vertices and edges
 - Each vertex holds a modifiable user defined value
 - Each edge is associated with a source vertex, value and a destination vertex

- **Runtime executes a sequence of iterations called Supersteps**
 - A user-defined function \(F \) is executed at each vertex \(V \)
 - \(F \) can read messages sent to \(V \) in superstep \(S - 1 \) and send message to other vertices, which will be received at superstep \(S + 1 \)
 - \(F \) can modify the state of \(V \) and its outgoing edges
 - \(F \) can change the topology of the graph
Algorithm Termination

- Vote to halt protocol
 - In superstep 0, every vertex is active
 - All active vertices participate in the superstep
 - A vertex deactivates itself by “voting to halt”
 - A vertex is reactivated if it receives an external message

- Program terminates when all vertices are simultaneously inactive and there are no messages in transit
The Pregel API in C++

- A Pregel program is written by subclassing the vertex class:

```c++
template <typename VertexValue, 
typename EdgeValue, 
typename MessageValue>

class Vertex {
public:
    virtual void Compute(MessageIterator* msgs) = 0;
    const string& vertex_id() const;
    int64 superstep() const;
    const VertexValue& GetValue();
    VertexValue* MutableValue();
    OutEdgeIterator GetOutEdgeIterator();
    void SendMessageTo(const string& dest_vertex, 
                        const MessageValue& message);
    void VoteToHalt();
};
```

- To define the types for vertices, edges and messages
- Override the compute function to define the computation at each superstep
- To get the value of the current vertex
- To modify the value of the vertex
- To pass messages to other vertices
Pregel Code for PageRank

class PageRankVertex : public Vertex<double, void, double> {
 public:
 virtual void Compute(MessageIterator* msgs) {
 if (superstep() >= 1) {
 double sum = 0;
 for (; !msgs->Done(); msgs->Next())
 sum += msgs->Value();
 *MutableValue() = 0.15 / NumVertices() + 0.85 * sum;
 }
 if (superstep() < 30) {
 const int64 n = GetOutEdgeIterator().size();
 SendMessageToAllNeighbors(GetValue() / n);
 } else {
 VoteToHalt();
 }
 SendMessageToAllNeighbors(1f / NumVerticies());
 }
};
Pregel runtime

- Master/Worker Architecture
 - Similar to GFS and MapReduce
 - Master partitions the graph and schedules supersteps
 - Workers execute active vertices

- Graph partitioning
 - The input graph is divided into partitions
 - Default partition function: hash(VertexID) mod N
 - Where N is the # of partitions
Fault Tolerance in Pregel

- Fault tolerance is achieved through checkpointing
 - At the start of every superstep the master may instruct the workers to save the state of their partitions in a stable storage (e.g., GFS)

- Master uses ping messages to detect worker failures

- If a worker fails, the master reassigns vertices/input to another available worker and restarts the superstep
 - The new worker reloads the partition state from the most recent checkpoint
Motivation for GraphLab

- **Recap: Shortcomings of Google MapReduce**
 - Programming model does not fit Graph computations
 - Overheads of running jobs iteratively — disk access and startup costs

- **Shortcomings of Google Pregel**
 - BSP model requires synchronous computation
 - Slowest machine determines computation speed
GraphLab

- A framework for parallel machine learning

Data Graph

Shared Data Table

Scheduling

Update Functions and Scopes
Data Graph

- Graphs associate data at every vertex and edge

Arbitrary blocks of data can be assigned to vertices and edges
Update Functions

- Data graph is modified via update functions
 - The update function can modify a vertex v and its neighborhood (or scope S_v)
Certain algorithms require global information shared among all vertices (Algorithm Parameters, Statistics, etc.)

- GraphLab exposes a Shared Data Table (SDT)

SDT is an associative map between keys and data blocks

- T[Key] => Data Block

The shared data table is updated using the sync mechanism
Sync Mechanism

- Similar to “Reduce” in MapReduce
 - User defines fold, merge and apply functions that are triggered during a global sync mechanism
- **Fold** allows the user to aggregate information across all vertices
- **Merge** (optionally) allows a parallel tree reduction
 - Similar to “Combiners” in MapReduce
- **Apply** finalizes the result from fold/merge and commits to the SDT

![Diagram of sync mechanism]
Scheduling in GraphLab

The process repeats until the scheduler is empty
Scheduling in GraphLab

- Base (Vertex) schedulers in GraphLab
 - Synchronous and Round-robin
 - Custom schedulers can also be defined
- Termination Assessment
 - If the scheduler has no remaining tasks
 - Or, a termination function can be defined to check for (algorithmic) convergence
Need for Consistency Models

- How much can computation overlap?
Consistency Models in GraphLab

- GraphLab guarantees sequential consistency
 - Guaranteed to give the same result in a sequential execution of the computational steps
- Consistency models
 - Full consistency
 - Edge consistency
 - Vertex consistency
Dataflow Systems
Dataflow Systems

- Computation expressed as graph of operators
 - An operator transforms input to some output
 - Data flows along edges of the graph

- Iteration is captured as a cycle in the dataflow
 - Think of a RA query plan + UDFs + iteration
Example: BGD

Loop-invariant data

Training data

map()

reduce()

update()

Gradient:

Computation

Gradient

model

Volatile data – changes with each iteration
Baseline: Hadoop

- One iteration is a DAG of MR jobs
- Iteration logic resides in the application
BGD in Hadoop

Training data

1 2

Model

a'

map() map() reduce()

1 2

Gradient

b

Application

- Apply update()
- Continue?

Iteration 1

Iteration 2
Shortcomings of Baseline

- Every iteration re-reads loop-invariant data
 - Batch Gradient Descent: Training data
 - PageRank: Links table
- Intrinsic overheads of Map/Reduce (cost to start-up tasks and controller)
 - Empirical evidence on startup cost of MapReduce job in Hadoop is in the order of a minute.
Haloop: Hadoop + Loops

Y. Bu et al., “HaLoop: Efficient Iterative Data Processing on Large Clusters”, VLDB 2010

- Extended MapReduce API to express iteration:
 - Designate the loop body
 - Specify loop termination (max iterations or convergence)
 - Designate loop-invariant data

- Haloop optimizes access to loop-invariant data
 - Physical caching and indexing of data
 - Loop-aware job scheduling
Data Access in Haloop

Training Data
1
2

Model
a'

map() → map() → map() → reduce(

No need to scan training data

Gradient
b

Iteration 1
Iteration 2

Running Time (s)

HaLoop
Hadooop

Total Iteration
Spark: In-memory dataflows

Key notion: Resilient Distributed Dataset (RDD)

- Resilient = recoverable if failures occur
- Distributed = partitioned across nodes
- Also, immutable

RDDs can be created from:

1. scanning data in stable storage, or
2. running an operator on other RDDs

A dataflow consumes RDDs and outputs RDDs
Illustration: BGD in Spark

Input Data

```scala
val points = spark.textFile(...) .map(parsePoint).persist()
```

Model

```scala
var w = // random initial vector

for (i <- 1 to ITERATIONS) {
  val gradient = points.map{ p =>
    p.x * (1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y
  }.reduce((a, b) => a+b)

  w = gradient
}
```

Map

```
W0 p1 W0 p2 W0 p3
```

Reduce

```
W0 p1 W0 p2 W0 p3
```

Update

```
W0 p1 W0 p2 W0 p3
```

Iteration 1

```
W0 p1 W0 p2 W0 p3
```

Iteration 2

```
W0 p1 W0 p2 W0 p3
```
Spark’s Execution Engine

- Loop-invariant data can be pinned in memory
- Computation gets scheduled near data
- No (implicit) checkpoints, use lineage instead
Other Efforts

- REX: Similar to Stratosphere
- Madlib: SQL library for matrix multiplication
- VW: Specialized tool for linear models
- DistBelief: Specialized system for NN learning
- Mahout: A library of ML algorithms over Hadoop
- Hyracks*
Conclusions and Outlook
Recap

Observation #1: Separation of logical/physical is reminiscent of query optimization.

Can we automate this translation?
Recap

Observation #2: Systems have to solve the same problems and adopt similar solutions

Can we isolate these solutions in reusable modules?
A Unifying Design

SQM → ML algorithm → Graph Analysis

Logical query over training data

Query optimizer

Parallel dataflow engine
A Concrete Proposal

Recursion is built-in

Amenable to optimizations

Lots of existing work that we can leverage
Version 0.1

- Implementation over Hyracks
- Supports both Iterative-MRU and Pregel
- Standard optimizations + some new tricks
Open Research Questions

- Iteration-aware query processing
 - Cost estimation for recursive computation
 - Cost models (time vs money)
 - Late- vs. early-stage processing
 - Effective handling of UDFs
- Computational models for graph analysis
- Provenance for triage
 - “My model misbehaves – why?”
- Tuning -- who is the “DBA”?
- Fault-awareness as a logical concept
 - Not all faults are catastrophic for ML
 - Algorithm-specific fault-tolerance
- Incremental learning
Thank you!

QUESTIONS?