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L1 versus LS (Least Squares)

Example: matrix A = randn(100,200), vector x0 has 20 nonzeros,
samples b := Ax0

min{‖x‖1 : Ax = b} min{‖x‖22 : Ax = b}

L1 has a sparse solution. LS has a dense solution.
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samples b := Ax0

min{‖x‖1 : Ax = b} min{‖x‖22 : Ax = b}

L1 has a sparse solution. LS has a dense solution.

How about

(L1+αLS) min{‖x‖1 +
1

2α
‖x‖22 : Ax = b}?
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1Yin, Osher, Goldfarb, and Darbon [2008]
2Zou and Hastie [2005]



To get a sparse solution, (L1+αLS) is seemingly a bad idea.

However, we will see in this talk:

I Sufficiently small α leads to an L1 minimizer, which is sparse

I Theoretical and numerical advantages of adding 1
2α‖x‖

2
2

1Yin, Osher, Goldfarb, and Darbon [2008]
2Zou and Hastie [2005]



To get a sparse solution, (L1+αLS) is seemingly a bad idea.

However, we will see in this talk:

I Sufficiently small α leads to an L1 minimizer, which is sparse

I Theoretical and numerical advantages of adding 1
2α‖x‖

2
2

The model is related to

I Linearized Bregman algorithm1

I Elastic net2 (it is a different purpose, looking for non-L1 minimizer)

1Yin, Osher, Goldfarb, and Darbon [2008]
2Zou and Hastie [2005]



Related problem: minimize nuclear-norm + LS

Notation. ‖ ∙ ‖∗: nuclear norm; ‖ ∙ ‖F : Frobenius norm;
‖ ∙ ‖1: sum of entries’ absolute values.

3Fazel [2002], Candes and Recht [2008]
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Related problem: minimize nuclear-norm + LS

Notation. ‖ ∙ ‖∗: nuclear norm; ‖ ∙ ‖F : Frobenius norm;
‖ ∙ ‖1: sum of entries’ absolute values.

I Low-rank matrix completion3 from Ω–subsamples

(Nu+αLS) min
X

{

‖X‖∗+
1

2α
‖X‖2F : Xij = Mij , ∀(i , j) ∈ Ω

}

Code: SVT by Cai, Candes, and Shen [2008]

I Robust PCA (low-rank + sparse decomposition)

min
L,S

{

‖L‖∗ + λ‖S‖1 +
1

2α

(
‖L‖2F + ‖S‖2F

)
: L + S = D

}

Code: IT by Wright, Ganesh, Rao, and Ma [2009]

3Fazel [2002], Candes and Recht [2008]



Outline

1. Guaranteed sparse/low-rank solutions

2. Linearized Bregman algorithm and its global linear convergence

3. Numerical performance with 2nd-order information



Exact regularization

Theorem (Friedlander and Tseng [2007], Yin [2010])
There exists α0 > 0 such that whenever α > α0, the unique solution to

(L1+αLS) min{‖x‖1 +
1

2α
‖x‖22 : Ax = b}

is also a solution to

(L1) min{‖x‖1 : Ax = b}.
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Exact regularization

Theorem (Friedlander and Tseng [2007], Yin [2010])
There exists α0 > 0 such that whenever α > α0, the unique solution to

(L1+αLS) min{‖x‖1 +
1

2α
‖x‖22 : Ax = b}

is also a solution to

(L1) min{‖x‖1 : Ax = b}.

L1 ball L1+LS ball



Recovery Guarantees

The following properties, which guarantee sparse recovery by L1
minimization, can also guarantee that by (L1+αLS) minimization:

I Null-space property4 (NSP). An “if and only if” property for
uniform recovery

I Restricted isometry principle5 (RIP). Widely used. An “if”
property shared by many randomly generated matrices.

I Spherical section property6 (SSP). Invariant to left-multiplying
nonsingular matrices, but more difficult to use than RIP.

I “RIPless” analysis7. Useful when RIP/SSP does not hold, gives
non-uniform guarantees with O(k log(n)) measurements

I more ...

4Donoho and Huo [2001], Gribonval and Nielsen [2003], Zhang [2005]
5Candes and Tao [2005]
6Zhang [2008], Vavasis [2009]
7Candes and Plan [2010]



Recovery Guarantees: Null-Space Condition

Theorem (exact recovery)
Assume ‖x0‖∞ is fixed. (L1+αLS) uniquely recovers all k-sparse vectors
x0 from measurements b = Ax0 if and only if

(

1 +
‖x0

S‖∞
α

)

‖hS‖1 ≤‖hSc‖1, (1)

holds for ∀ h ∈ Null(A) and ∀ coordinate sets S of cardinality |S| ≤ k.
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of rank r or less from measurements b = A(X0) if and only if

(
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) r∑

i=1

σi (H) ≤
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i=r+1

σi (H) (2)

holds for all matrices H ∈ Null(A).



Recovery Guarantees: Null-Space Condition

Theorem (exact recovery)
Assume ‖x0‖∞ is fixed. (L1+αLS) uniquely recovers all k-sparse vectors
x0 from measurements b = Ax0 if and only if

(

1 +
‖x0

S‖∞
α

)

‖hS‖1 ≤‖hSc‖1, (1)

holds for ∀ h ∈ Null(A) and ∀ coordinate sets S of cardinality |S| ≤ k.

Theorem (matrix exact recovery)
Assume that ‖X0‖2 is fixed. (Nu+αFr) uniquely recovers all matrices X0

of rank r or less from measurements b = A(X0) if and only if

(

1 +
‖X0‖2

α

) r∑

i=1

σi (H) ≤
m∑

i=r+1

σi (H) (2)

holds for all matrices H ∈ Null(A).

Hints: (1) suggests α ≥ C ∙ ‖x0‖∞; (2) suggests α ≥ C ∙ ‖X0‖2.



Level curves of relative-error 10−3. Above each curve is where the
relative error >1e-3. A higher curve means better performance.

‖x0‖∞ = 1 for all cases.
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±1 sparse Gaussian sparse Power-law sparse

Conclusion: α = 10‖x0‖∞ works well for compressive sensing!

There are various ways to estimate ‖x0‖∞.



Recovery Guarantees: Restricted Isometry Principle (RIP)

Definition (Candes and Tao [2005])
The RIP constant δk is the smallest value such that

(1− δk)‖x‖
2
2 ≤ ‖Ax‖22 ≤ (1 + δk)‖x‖

2
2

holds for all k-sparse vectors x ∈ Rn.

Theorem (exact recovery)
Assume that x0 ∈ Rn is k-sparse. If A satisfies RIP with δ2k ≤ 0.4404
and α ≥ 10‖x0‖∞, then x0 is the unique minimizer of (L1+αLS) given
measurements b := Ax0.
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Definition (Candes and Tao [2005])
The RIP constant δk is the smallest value such that

(1− δk)‖x‖
2
2 ≤ ‖Ax‖22 ≤ (1 + δk)‖x‖

2
2

holds for all k-sparse vectors x ∈ Rn.

Theorem (exact recovery)
Assume that x0 ∈ Rn is k-sparse. If A satisfies RIP with δ2k ≤ 0.4404
and α ≥ 10‖x0‖∞, then x0 is the unique minimizer of (L1+αLS) given
measurements b := Ax0.

Theorem (matrix exact recovery)
Let X0 be a matrix with rank r or less. If A satisfies RIP with
δ2r ≤ 0.4404 and α ≥ 10‖X0‖2, then X0 is the unique minimizer of
(Nu+αFr) given measurements b := A(X0).

• Work on RIP constants: Candes [2008], Foucart and Lai [2009],
Foucart [2010], Cai, Wang, and Xu [2010], Mo and Li [2011]. We used
proof techniques from Mo and Li [2011].



Recovery Guarantees: Restricted Isometry Principle (RIP)

For approximately sparse signals and/or noisy measurements, solve the
`2-constrained model:

min
x

{

‖x‖1 +
1

2α
‖x‖22 : ‖Ax− b‖2 ≤ σ

}

(3)

8One can use α/‖x0‖∞ and α/‖x0
Z‖∞ to improve the constants.



Recovery Guarantees: Restricted Isometry Principle (RIP)

For approximately sparse signals and/or noisy measurements, solve the
`2-constrained model:

min
x

{

‖x‖1 +
1

2α
‖x‖22 : ‖Ax− b‖2 ≤ σ

}

(3)

Theorem (stable recovery)
Let x0 ∈ Rn be an arbitrary vector, S = {largest k components of x0},
and Z = SC . Let b := Ax0 + n, where n is an arbitrary noisy vector. If A
satisfies RIP with δ2k ≤ 0.3814, then the solution x∗ of (3) with
α ≥ 10‖x0‖∞ and σ = ‖n‖2 satisfies

‖x∗ − x0‖1 ≤C1 ∙
√

k‖n‖2 + C2 ∙ ‖x
0
Z‖1,

‖x∗ − x0‖2 ≤C̄1 ∙ ‖n‖2 + C̄2 ∙ ‖x
0
Z‖1/

√
k ,

where C1, C2, C̄1, and C̄2 are constants depending8 on δ2k .

8One can use α/‖x0‖∞ and α/‖x0
Z‖∞ to improve the constants.



Recovery Guarantees: Restricted Isometry Principle (RIP)

For approximately low-rank matrices and/or noisy measurements, solve
`2-constrained the model:

min
X

{

‖X‖∗ +
1

2α
‖X‖2F : ‖A(X)− b‖2 ≤ σ

}

(4)

9One can use α/σ1(X0) and α/σr+1(X0) to improve the constants.



Recovery Guarantees: Restricted Isometry Principle (RIP)

For approximately low-rank matrices and/or noisy measurements, solve
`2-constrained the model:

min
X

{

‖X‖∗ +
1

2α
‖X‖2F : ‖A(X)− b‖2 ≤ σ

}

(4)

Theorem (matrix stable recovery)
Let X0 ∈ Rn1×n2 be an arbitrary matrix, and σi (X0) be its i -th largest
singular value. Let b := A(X0) + n, where n is an arbitrary noisy vector.
If linear operator A satisfies RIP with δ2r ≤ 0.3814, then the solution X∗

of (4) with α ≥ 10‖X0‖2 and σ = ‖n‖2 satisfies

‖X∗ − X0‖∗ ≤C1 ∙
√

r‖n‖2 + C2 ∙ σ̂(X0),

‖X∗ − X0‖F ≤C̄1 ∙ ‖n‖2 +
(
C̄2/
√

r
)
∙ σ̂(X0),

where σ̂(X0) =
∑min{n1,n2}

i=r+1 σi (X0), and C1, C2, C̄1, and C̄2 are constants
depending9 on δ2r .

9One can use α/σ1(X0) and α/σr+1(X0) to improve the constants.



Recovery Guarantees: Spherical Section Property

Definition (Vavasis [2009])
Assume m > 0, n > 0, and m < n. An (n −m)-dim subspace V ⊂ Rn

has the Δ spherical section property (Δ-SSP) if

‖h‖1
‖h‖2

≥

√
m

Δ
, ∀ h ∈ V .

10Zhang [2008]
11Kashin [1977], Garnaev and Gluskin [1984]



Recovery Guarantees: Spherical Section Property

Definition (Vavasis [2009])
Assume m > 0, n > 0, and m < n. An (n −m)-dim subspace V ⊂ Rn

has the Δ spherical section property (Δ-SSP) if

‖h‖1
‖h‖2

≥

√
m

Δ
, ∀ h ∈ V .

Significance:10

1. Null(A) has Δ-SSP and m
Δ ≥ 4k ⇒ `1–NSP ⇒ uniform recovery

2. A uniformly random (n −m)-dim subspace V has Δ-SSP11 for

Δ = C0(log(n/m) + 1)

with prob ≥ 1− eC1(n−m), where C0 and C1 are universal constants.

Hence, uniformly random Null(A) leads to exact recovery under
m = O(k log(n/m)) measurements by `1 with overwhelming probability.

10Zhang [2008]
11Kashin [1977], Garnaev and Gluskin [1984]



Recovery Guarantees: Spherical Section Property

Theorem (exact recovery)
Suppose Null(A) has Δ-SSP. Fix ‖x0‖∞ and α > 0. If

m ≥

(

2 +
‖x0‖∞

α

)2

kΔ, (5)

then (L1+αLS) recovers all k-sparse x0 from measurements b = Ax0.
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Recovery Guarantees: Spherical Section Property

Theorem (exact recovery)
Suppose Null(A) has Δ-SSP. Fix ‖x0‖∞ and α > 0. If

m ≥

(

2 +
‖x0‖∞

α

)2

kΔ, (5)

then (L1+αLS) recovers all k-sparse x0 from measurements b = Ax0.

Theorem (stable recovery)
Let x0 ∈ Rn be an arbitrary vector, S = {largest k components of x0},
and Z = SC . Suppose Null(A) has Δ-SSP. Let α > 0. If

m ≥ 4

(

1 +

(
α + ‖x0

S‖∞
α− ‖x0

Z‖∞

))2

kΔ, (6)

then the solution x∗ of (L1+αLS) satisfies

‖x∗ − x0‖1 ≤
8α

α− ‖x0
Z‖∞

∙ ‖x0
Z‖1. (7)

• Similar results hold for matrix recovery under the Δ-SSP of Null(A)



Recovery Guarantees: an “RIPless” property12

• Especially useful when NSP/RIP/SSP are difficult to check or do not
hold (with good constants).

• Applications: orthogonal transform ensembles satisfying an incoherence
condition, random Teoplitz/circulant ensembles, certain tight and
continuous frame ensembles

Theorem (exact recovery)
Let x0 ∈ Rn be a fixed k-sparse vector. With prob ≥ 1− 5/n− e−β , x0 is
the unique solution to (L1+αLS) given b = Ax0 and α ≥ 8‖x0‖2 if

m ≥ C0(1 + β)μ(A) ∙ k log n,

where C0 is a constant and μ(A) is the incoherence parameter of A.

12Candes and Plan [2010]



Guarantee for matrix completion

Theorem (Zhang, Cai, Cheng, and Zhu [2012])
Consider matrix M ∈ Rn1×n2 obeying the strong incoherence
assumption13. With

α ≥
4

p
‖ProjΩM‖F , where p =

m

n1n2

and probability ≥ 1− n−3, matrix M is the unique solution to

min{‖X‖∗ +
1

2α
‖X‖2F : Xij = Mij , ∀(i , j) ∈ Ω}.

13Candes and Tao [2010]



Outline

1. Guarantees for recovering sparse solutions

2. Linearized Bregman algorithm and its global geometric
convergence

3. Numerical performance with 2nd-order information



Linearized Bregman

I Bregman distance

DJ(x; y) = J(x)− [J(y) + 〈p, x− y〉
︸ ︷︷ ︸
linearization of J at y

], p ∈ ∂J(y)

I Bregman iteration

xk+1 ← min DJ(x; x
k) +

1

2
‖Ax− b‖22,

pk+1 ← pk + A>(b− Axk+1).

Equivalent to augmented Lagrangian after change of variables.

I Linearized Bregman iteration

xk+1 ← min DJ(x; x
k) + h〈A>(Axk − b), x〉+

1

2α
‖x− xk‖22,

pk+1 ← pk + hA>(b− Axk)−
1

α
(xk+1 − xk).



Compare Bregman and linearized Bregman Algorithms

sparse optimization Bregman linearized Bregman

subproblem BPDN14 closed form
iterations 5 - 10 50 - 3000
minimizes {J(x) : Ax = b}? Yes15 α exact regularization
truncation–error forgetting? Yes16 n/a

14minx ‖x‖1 + μ
2
‖Ax − bk‖2

2
15Yin, Osher, Goldfarb, and Darbon [2008]
16Yin and Osher [2012]



Linearized Bregman

Theorem (Cai, Osher, and Shen [2009], Yin [2010])
The linearized Bregman iteration generates a sequence {xk} converging
to the solution of

(L1+αLS) min

{

J(x) +
1

2α
‖x‖22 : Ax = b

}

.

Clue: DJ(∙)(x; x
k) + 1

2α‖x− xk‖22 = DJ(∙)+ 1
2α‖∙‖2

2
(x; xk)

Theorem (Yin [2010])
The linearized Bregman iteration = gradient descent to the Lagrange
dual of (L1+αLS):

min −b>y +
α

2
‖A>y − Proj[−1,1]n(A

>y)‖22.



Lagrangian dual is unconstrained and C 1

Theorem (Convex Analysis by Rockafellar [1970])
If a convex program has a strictly convex objective, it has a unique
solution and its Lagrangian dual program is differentiable.
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Lagrangian dual is unconstrained and C 1

Theorem (Convex Analysis by Rockafellar [1970])
If a convex program has a strictly convex objective, it has a unique
solution and its Lagrangian dual program is differentiable.

min −b>y +
α

2
‖A>y − Proj[−1,1]n(A

>y)‖22.

-5 0 5

0

2

4

6

8

z

1
2
(z − Proj[−1,1](z))2

Lead to important consequences:

I Grad descent has global linear (geometric) convergence

I Much faster algorithms using (approximate) 2nd-order information



Global linear (geometric) convergence

Theorem
Assume a solution x∗ 6= 0 exists. Let Y∗ be the set of optimal dual
solutions. Let f be the dual objective function, and f ∗ be the optimal
dual objective value. The linearized Bregman iteration starting from any
y0 with step size 0 < h < 2ν/(α2‖A‖4) generates

I globally Q-linearly converging dual solutions {yk}:

dist`2(y
k ,Y∗) ≤ C k/2 ∙ dist`2(y

0,Y∗),

I globally R-linearly converging dual values {f (yk)} and primal
solutions {xk}:

f (yk)− f ∗ ≤ (L/2)C k ∙
(
dist`2(y

0,Y∗)
)2

,

‖xk+1 − x∗‖2 ≤ α‖A‖2C
k/2 ∙ dist`2(y

0,Y∗),

where ν is a restricted strong convexity constant, and
C := 1− 2hν + h2α2‖A‖42 obeys 0 < C < 1.



Proof outline

Recall dual objective:

f (y) := −b>y +
α

2
‖A>y − Proj[−1,1]n(A

>y)‖22

• Dual solution set: Y∗ = {y′ ∈ Rm : α shrink(A>y′) = x∗}
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Proof outline

Recall dual objective:

f (y) := −b>y +
α

2
‖A>y − Proj[−1,1]n(A

>y)‖22

• Dual solution set: Y∗ = {y′ ∈ Rm : α shrink(A>y′) = x∗}

• (Key!) Restricted strong convexity (RSC): ∃ ν > 0 such that

〈y − ProjY∗(y),∇f (y)〉 ≥ ν‖y − ProjY∗(y)‖2, ∀ y ∈ Rm

Compare with strong convexity (which does not hold in our case):

〈y − y′,∇f (y)−∇f (y′)〉 ≥ c‖y − y′‖2, ∀y, y′ ∈ Rm

• From RSC to global linear convergence is standard



Proving RSC requires eigen-properties of A:

• Decompose A = [“active cols.” “inactive cols.”] = [Ā B̄]

• We need to bound RSC constant ν from zero, translating to proving

min
Ax 6=0

(Ax)>(ĀD̄Ā>)(Ax)

(Ax)>(Ax)
> 0, (where D̄ � 0 is fixed).

It’s true only if rank(Ā) = rank(A), which is not the case since x∗ is
sparse and thus active columns are very few!



Proving RSC requires eigen-properties of A:

• Decompose A = [“active cols.” “inactive cols.”] = [Ā B̄]

• We need to bound RSC constant ν from zero, translating to proving

min
Ax 6=0

(Ax)>(ĀD̄Ā>)(Ax)

(Ax)>(Ax)
> 0, (where D̄ � 0 is fixed).

It’s true only if rank(Ā) = rank(A), which is not the case since x∗ is
sparse and thus active columns are very few!

• After finer analysis, we can instead bound ν by

min

{
(Ax)>(ĀD̄Ā>)(Ax)

(Ax)>(Ax)
: Ax= Āc̄ + B̄d̄ 6= 0, d̄ ≥ 0, B̄>(Āc̄ + B̄d̄) ≤ 0

}

≥ min{λ++
min(ĀD̄Ā> + C̄>C̄) : C̄ is an m-by-p submatrix of B̄, p ≥ 0}



Compare with convergence results of other algorithms

For sparse optimization:

I Iterative soft-thresholding (ISTA): asymptotic linear convergence17

(find support of x∗ in finitely many steps; then converge linearly), no
global linear convergence rate, but has global sublinear rate
f (xk)− f ∗ ≈ O(1/k)

I FISTA: global sublinear convergence18 f (xk)− f ∗ ≈ O(1/k2)

I Alternating-direction method /split Bregman: no known rate of
convergence for `1 better than O(1/k)

I Accelerated linearized Bregman19: O(1/k2)

I Linearized Bregman: O(μk), μ < 1, for ‖xk − x∗‖ and f (xk)− f ∗

17Hale, Yin, and Zhang [2008]
18Beck and Teboulle [2009]
19Huang, Ma, and Goldfarb [2011]



Outline

1. Guarantees for recovering sparse solutions

2. Linearized Bregman algorithm and its global geometric convergence

3. Numerical performance with 2nd-order information



Much faster convergence

• Dual is differentiable, so we can apply gradient–based techniques

20Osher, Mao, Dong, and Yin [2010]
21Barzilai and Borwein [1988]
22Zhang and Hager [2004]
23Liu and Nocedal [1989]



Much faster convergence
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xk := A(A>yk − Proj[−1,1]n(A
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Much faster convergence

• Dual is differentiable, so we can apply gradient–based techniques

• Primal xk can be recovered from dual yk :

xk := A(A>yk − Proj[−1,1]n(A
>yk))

Numerically compare

(1) Original linearized Bregman (dual grad descent)

(2) (1) + Kicking20

(3) (2) + BB step21 + non-monotone22 line search

(4) Limited-memory BFGS or L-BFGS23 (only use last 5 gradients)

The ADM approach by Yang, Moller, and Osher [2011] has impressive
results but haven’t been compared yet.

20Osher, Mao, Dong, and Yin [2010]
21Barzilai and Borwein [1988]
22Zhang and Hager [2004]
23Liu and Nocedal [1989]



Test on a Gaussian Sparse Signal
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Test on a ±1 Sparse Signal

0 50 100 150 200 250
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2 Error of x(k)

iteration

2-
no

rm
 e

rr
or

 

 
original
kicking
line search
L-BFGS

0 50 100 150 200 250
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0 Error of y(k)

iteration

2-
no

rm
 e

rr
or

 

 
original
kicking
line search
L-BFGS



Summary

Conclusions

I (L1+αLS) can still give sparse solutions (unlike the Huber-norm)

I Dual of (L1+αLS) is differentiable, grad-descent has global linear
convergence

I Using 2nd-order information significantly accelerates convergence

Current and Future Work

I More effective smoothing?

I Develop much faster algorithms using 2nd-order info for `1 and
problems exploiting low-dimensional structures

I Upgrade existing codes with αLS

I More ...
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