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L1 versus LS (Least Squares)

Example: matrix A = randn(100,200), vector x° has 20 nonzeros,
samples b := Ax°
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L1 has a sparse solution. LS has a dense solution.
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L1 has a sparse solution. LS has a dense solution.

How about

. 1
(L1+alS) min{||x|l1 + ZHXH% : Ax = b}?



To get a sparse solution, (L1+alS) is seemingly a bad idea.

1Yin, Osher, Goldfarb, and Darbon [2008]
2Zou and Hastie [2005]
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To get a sparse solution, (L1+alS) is seemingly a bad idea.

However, we will see in this talk:
» Sufficiently small « leads to an L1 minimizer, which is sparse
> Theoretical and numerical advantages of adding - [|x|3

The model is related to
> Linearized Bregman algorithm?!

» Elastic net? (it is a different purpose, looking for non-L1 minimizer)

1Yin, Osher, Goldfarb, and Darbon [2008]
2Zou and Hastie [2005]



Related problem: minimize nuclear-norm + LS

Notation. || - ||.: nuclear norm; || - ||r: Frobenius norm;
| - []1: sum of entries’ absolute values.

3Fazel [2002], Candes and Recht [2008]



Related problem: minimize nuclear-norm + LS

Notation. || - ||.: nuclear norm; || - ||r: Frobenius norm;
| - []1: sum of entries’ absolute values.

» Low-rank matrix completion® from Q-subsamples
(Nurals) o { Xt X2 X = My (1) € 2

Code: SVT by Cai, Candes, and Shen [2008]

3Fazel [2002], Candes and Recht [2008]



Related problem: minimize nuclear-norm + LS

Notation. || - ||.: nuclear norm; || - ||r: Frobenius norm;
| - []1: sum of entries’ absolute values.

» Low-rank matrix completion® from Q-subsamples
(Nurals) o { Xt X2 X = My (1) € 2

Code: SVT by Cai, Candes, and Shen [2008]

» Robust PCA (low-rank + sparse decomposition)
{IILII +AUIS] + 5 (|||-||F +SIIF) s L+S = D}

Code: IT by Wright, Ganesh, Rao, and Ma [2009]

3Fazel [2002], Candes and Recht [2008]



Outline

1. Guaranteed sparse/low-rank solutions
2. Linearized Bregman algorithm and its global linear convergence

3. Numerical performance with 2nd-order information



Exact regularization

Theorem (Friedlander and Tseng [2007], Yin [2010])

There exists o® > 0 such that whenever o > o°, the unique solution to
. 1 5
(L1+alS) m|n{|\x||1+g||x||2 : Ax = b}

is also a solution to

(L1) min{||x||; : Ax = b}.
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Exact regularization

Theorem (Friedlander and Tseng [2007], Yin [2010])

There exists o® > 0 such that whenever o > o°, the unique solution to
. 1 5
(L1+alS) m|n{|\x||1+g||x||2 : Ax = b}

is also a solution to

(L1) min{||x||; : Ax = b}.

Ax=b t Ax=b

A4

L1 ball L1+LS ball




Recovery Guarantees

The following properties, which guarantee sparse recovery by L1
minimization, can also guarantee that by (L1+aLS) minimization:
» Null-space property* (NSP). An “if and only if" property for
uniform recovery

» Restricted isometry principle® (RIP). Widely used. An “if”
property shared by many randomly generated matrices.

» Spherical section property® (SSP). Invariant to left-multiplying
nonsingular matrices, but more difficult to use than RIP.

» “RIPless” analysis’. Useful when RIP/SSP does not hold, gives
non-uniform guarantees with O(k log(n)) measurements

> more ...

4Donoho and Huo [2001], Gribonval and Nielsen [2003], Zhang [2005]
5Candes and Tao [2005]

6Zhang [2008], Vavasis [2009]

“Candes and Plan [2010]



Recovery Guarantees: Null-Space Condition

Theorem (exact recovery)

Assume ||x°|| is fixed. (L1+aLS) uniquely recovers all k-sparse vectors
x° from measurements b = Ax® if and only if

X3 ]
1+ =" [hs(l1 <|lhsc|l1, (1)

holds for V h € Null(A) and V coordinate sets S of cardinality |S| < k.
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Recovery Guarantees: Null-Space Condition

Theorem (exact recovery)

Assume ||x°|| is fixed. (L1+aLS) uniquely recovers all k-sparse vectors
x° from measurements b = Ax® if and only if

X3 ]
1+ =" [hs(l1 <|lhsc|l1, (1)

holds for V h € Null(A) and V coordinate sets S of cardinality |S| < k.

Theorem (matrix exact recovery)

Assume that ||X°||, is fixed. (Nu+aFr) uniquely recovers all matrices X°
of rank r or less from measurements b = A(X°) if and only if

m

(1 + ”)?'2) zr:a,'(H) < ) oi(H) (2)

i=r+1
holds for all matrices H € Null(.A).

Hints: (1) suggests a > C - ||x°||0; (2) suggests a > C - || X°|».



sparsity k

Level curves of relative-error 10~3. Above each curve is where the
relative error >1e-3. A higher curve means better performance.
¥« = 1 for all cases.

a=1

60

—a=10
- - a=25

80

160

60

a=1
—a=10
- - a=25
BP

60

a=1 7
/
—a=10 Y
--0a=25
BP

sparsity k
2
5

n
S

measurements m

+1 sparse

80 160

200
measurements m

Gaussian sparse

80 160

200
measurements m

Power-law sparse

Conclusion: o = 10]|x°|| works well for compressive sensing!

There are various ways to estimate ||x°||oo.



Recovery Guarantees: Restricted Isometry Principle (RIP)

Definition (Candes and Tao [2005])
The RIP constant § is the smallest value such that

(1 =3 Ixl15 < AX[I3 < (1 + 6, [x[I3
holds for all k-sparse vectors x € R".

Theorem (exact recovery)

Assume that x° € R" is k-sparse. If A satisfies RIP with 6, < 0.4404
and o > 10||x°|| o, then x° is the unique minimizer of (L1+«lLS) given
measurements b := Ax°.
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Recovery Guarantees: Restricted Isometry Principle (RIP)

Definition (Candes and Tao [2005])
The RIP constant ¢y is the smallest value such that

(1 =3 Ixl15 < AX[I3 < (1 + 6, [x[I3
holds for all k-sparse vectors x € R".

Theorem (exact recovery)

Assume that x° € R" is k-sparse. If A satisfies RIP with 6, < 0.4404
and o > 10||x°|| o, then x° is the unique minimizer of (L1+«lLS) given
measurements b := Ax°.

Theorem (matrix exact recovery)

Let XO be a matrix with rank r or less. If A satisfies RIP with
82, < 0.4404 and o > 10||X°||2, then X° is the unique minimizer of
(Nu+«aFr) given measurements b := A(X°).

e Work on RIP constants: Candes [2008], Foucart and Lai [2009],
Foucart [2010], Cai, Wang, and Xu [2010], Mo and Li [2011]. We used
proof techniques from Mo and Li [2011].



Recovery Guarantees: Restricted Isometry Principle (RIP)

For approximately sparse signals and/or noisy measurements, solve the
{>-constrained model:

: 1
min {||X||1 + 5 lIx3 < [[Ax = b2 < 0} (3)
«

80ne can use a/||x%||c and /|[x%||co to improve the constants.



Recovery Guarantees: Restricted Isometry Principle (RIP)

For approximately sparse signals and/or noisy measurements, solve the
{>-constrained model:

. 1
min Il + 5 13 : JAx ~ bl < o @)

Theorem (stable recovery)
Let x° € R" be an arbitrary vector, S = {largest k components of x°},
and Z = SC. Let b := Ax® 4+ n, where n is an arbitrary noisy vector. If A
satisfies RIP with 6o, < 0.3814, then the solution x* of (3) with
a > 10||x°||ee and o = ||n||2 satisfies

Ix* =Xl <Co- Vknll2 + G- [xZ 1,

Ix* =x°)l2 <Cyi - [Infl2 + Co - [|x% 2/ Vk,

where C1, G5, Cy, and C, are constants depending® on do.

80ne can use a/||x%||c and /|[x%||co to improve the constants.
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For approximately low-rank matrices and/or noisy measurements, solve
{>-constrained the model:
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90ne can use a/01(X%) and a/0,41(X%) to improve the-constants.



Recovery Guarantees: Restricted Isometry Principle (RIP)

For approximately low-rank matrices and/or noisy measurements, solve
{>-constrained the model:

. 1
o { X1 + 51 X1 1400 ~ bl < o *)

Theorem (matrix stable recovery)

Let X° € R™*™ be an arbitrary matrix, and o;(X°) be its i-th largest
singular value. Let b := A(X®) + n, where n is an arbitrary noisy vector.
If linear operator A satisfies RIP with d,, < 0.3814, then the solution X*
of (4) with a > 10||X°|| and o = ||n||> satisfies

IX* = X°ll. <G VrlInfl2 + G - 8(X°),
IX* = X°llr <G - fInll2 + (Co/Vr) - 6(X°),

where 5(X°) = Zg:i"ll’m} 0:(X°), and C;, Gy, Gy, and C, are constants
depending® on 6, .

90ne can use a/01(X%) and a/0,41(X%) to improve the-constants.



Recovery Guarantees: Spherical Section Property

Definition (Vavasis [2009])

Assume m >0, n> 0, and m < n. An (n — m)-dim subspace ¥V C R”"
has the A spherical section property (A-SSP) if

[[hl]1 fm
>4/—, Yhe).
[hll2 A

10Zhang [2008]
1 Kashin [1977], Garnaev and Gluskin [1984]



Recovery Guarantees: Spherical Section Property
Definition (Vavasis [2009])

Assume m >0, n> 0, and m < n. An (n — m)-dim subspace ¥V C R”"
has the A spherical section property (A-SSP) if

[hlly _ [m
>4/—, VheV.
[l A
Significance:

1. Null(A) has A-SSP and § > 4k = (;—-NSP = uniform recovery
2. A uniformly random (n — m)-dim subspace V has A-SSP!! for

10

A = Co(log(n/m) + 1)

with prob > 1 — e ("=m where Cy and C; are universal constants.

Hence, uniformly random Null(A) leads to exact recovery under
m = O(k log(n/m)) measurements by ¢; with overwhelming probability.

10Zhang [2008]
1 Kashin [1977], Garnaev and Gluskin [1984]



Recovery Guarantees: Spherical Section Property

Theorem (exact recovery)
Suppose Null(A) has A-SSP. Fix ||x°||oc and o > 0. If

0 2
m > (2 + HXHOO) kA, (5)
«Q

then (L1+alLS) recovers all k-sparse x° from measurements b = Ax°.



Recovery Guarantees: Spherical Section Property

Theorem (exact recovery)
Suppose Null(A) has A-SSP. Fix ||x°||oc and o > 0. If

(2 + ||x2|oo)2 kA, (5)

then (L1+alLS) recovers all k-sparse x° from measurements b = Ax°.

Theorem (stable recovery)

Let x° € R" be an arbitrary vector, S = {largest k components of x°},
and Z = S¢. Suppose Null(A) has A-SSP. Let a > 0. If
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I =%y < X[l (7)
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Recovery Guarantees: Spherical Section Property

Theorem (exact recovery)
Suppose Null(A) has A-SSP. Fix ||x°|s and o > 0. If

(2 + ||x2|oo)2 kA, (5)

then (L1+alLS) recovers all k-sparse x° from measurements b = Ax°.

Theorem (stable recovery)

Let x° € R" be an arbitrary vector, S = {largest k components of x°},
and Z = S¢. Suppose Null(A) has A-SSP. Let a > 0. If

m24(1+(a+”)((%”°°)>2kA, (6)

a = [xzllo
then the solution x* of (L1+«aLS) satisfies

I =%y < X[l (7)

|| zlloo

o Similar results hold for matrix recovery under the A-SSP of Null(.A)



Recovery Guarantees: an “RIPless” property?

o Especially useful when NSP/RIP/SSP are difficult to check or do not
hold (with good constants).

e Applications: orthogonal transform ensembles satisfying an incoherence
condition, random Teoplitz/circulant ensembles, certain tight and
continuous frame ensembles

Theorem (exact recovery)

Let x° € R" be a fixed k-sparse vector. With prob >1—5/n—e= P, x% is
the unique solution to (L1+alLS) given b = Ax® and a > 8||x°||» if

m = Go(1+ B)u(A) - klog n,

where Cy is a constant and (i(A) is the incoherence parameter of A.

2Candes and Plan [2010]



Guarantee for matrix completion

Theorem (Zhang, Cai, Cheng, and Zhu [2012])

Consider matrix M € R™*™ obeying the strong incoherence
assumption'3. With

4 m
a > —||ProjoM||r, where p=——
P nym

and probability > 1 — n=3, matrix M is the unique solution to

. 1 .
min (X + 5o IXI £ X5 = My, ¥(3.)) € 2.

13Candes and Tao [2010]



Outline

1. Guarantees for recovering sparse solutions

2. Linearized Bregman algorithm and its global geometric
convergence

3. Numerical performance with 2nd-order information



Linearized Bregman

» Bregman distance

Dy(x;y) = J(x) = [J(y) + (p,x—y)], p€IJ(y)

linearization of J at y

» Bregman iteration
k+1 : k 1 2
X"+ — min D(x; x )+§||Ax—b||2,
pk+1 - pk + AT(b _ AXk+1).

Equivalent to augmented Lagrangian after change of variables.

» Linearized Bregman iteration
1
X1 — min Dy(x; x¥) + h(AT (Ax* — b), x) + 2—||x —x¥|3,
«@

1
p*t — pF+ hAT (b — Ax¥) — a(xk+1 —xN).



Compare Bregman and linearized Bregman Algorithms

sparse optimization \ Bregman \ linearized Bregman
subproblem BPDN™ closed form
iterations 5-10 50 - 3000
minimizes {J(x) : Ax = b}? Yes?® o exact regularization
truncation—error forgetting? Yes!® n/a

Foming [xll1 + & A% — b3
15Yin, Osher, Goldfarb, and Darbon [2008]
16Yin and Osher [2012]



Linearized Bregman

Theorem (Cai, Osher, and Shen [2009], Yin [2010])

The linearized Bregman iteration generates a sequence {x*} converging
to the solution of

(L1+alLS) min {J(x)+21a||x||§ :Ax = b}.

Clue: Dyy(x;x¥) + 5= [lx — x¥[3 = Dy ez (x: x¥)

2c

Theorem (Yin [2010])

The linearized Bregman iteration = gradient descent to the Lagrange
dual of (L1+«lLS):

. a .
min —b 'y + EHATY - PrOJ[q,l]n(ATY)”é



Lagrangian dual is unconstrained and C!

Theorem (Convex Analysis by Rockafellar [1970])

If a convex program has a strictly convex objective, it has a unique
solution and its Lagrangian dual program is differentiable.
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Lagrangian dual is unconstrained and C!

Theorem (Convex Analysis by Rockafellar [1970])

If a convex program has a strictly convex objective, it has a unique
solution and its Lagrangian dual program is differentiable.

. o .
min —bTy + EHATY - PI"OJ[71,1]n(AT)’)||§~

5 o 5

3(z = Proji_ y4(2))?

Lead to important consequences:
» Grad descent has global linear (geometric) convergence
» Much faster algorithms using (approximate) 2nd-order information



Global linear (geometric) convergence

Theorem

Assume a solution x* # 0 exists. Let Y* be the set of optimal dual
solutions. Let f be the dual objective function, and f* be the optimal
dual objective value. The linearized Bregman iteration starting from any
y° with step size 0 < h < 2v/(a?||A||*) generates

» globally Q-linearly converging dual solutions {y*}:
diStfz (ykv y*) < Ck/2 ’ diStfz (y07 y*)7

» globally R-linearly converging dual values {f(y*)} and primal
solutions {x*}:

F(y*) — £ < (L/2)C* - (diste, (y%, 7)),

X = x|z < | A2 CH2 - diste, (3, )

where v is a restricted strong convexity constant, and
C:=1-2hv+ h?a?||A||3 obeys 0 < C < 1.



Proof outline

Recall dual objective:
« .
f(y):=—b'y+ Z[|ATy = Proji_s (A )|

e Dual solution set: Y* = {y’ € R™ : ashrink(ATy') = x*}
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Proof outline

Recall dual objective:
« .
f(y):=—b'y+ Z[|ATy = Proji_s (A )|

e Dual solution set: V* = {y’ € R™ : ashrink(ATy’) = x*}
o (Key!) Restricted strong convexity (RSC): 3 v > 0 such that
(y — Projy-(y), VF(y)) = vlly — Projy-(y)|?, Vy€R"
Compare with strong convexity (which does not hold in our case):
(y =y, VFy) = VF(y)) > clly -y’ Vy,y €R”

e From RSC to global linear convergence is standard



Proving RSC requires eigen-properties of A:
e Decompose A = [“active cols.” “inactive cols."] = [A B]
e We need to bound RSC constant v from zero, translating to proving
Ax)T(ADAT)(A
(A9 (ADAT)(Ax)

here D is fi .
foin, (Ax)™ (Ax) >0, (where D > 0 is fixed)

It's true only if rank(A) = rank(A), which is not the case since x* is
sparse and thus active columns are very few!



Proving RSC requires eigen-properties of A:
e Decompose A = [“active cols.” “inactive cols."] = [A B]

e We need to bound RSC constant v from zero, translating to proving

 (Ax)T(ADAT)(Ax)

here D is fi .
min (Ax)T (Ax) >0, (where D > 0 is fixed)

It's true only if rank(A) = rank(A), which is not the case since x* is
sparse and thus active columns are very few!

e After finer analysis, we can instead bound v by

- (Ax)T(ADAT)(Ax)
U (AT (AY
> min{\"F(ADAT + C"C) : C is an m-by-p submatrix of B, p > 0}

Ax— AE+B8¢0,8207BT(AE+BH)§0}



Compare with convergence results of other algorithms

For sparse optimization:

>

Iterative soft-thresholding (ISTA): asymptotic linear convergencel”

(find support of x* in finitely many steps; then converge linearly), no
global linear convergence rate, but has global sublinear rate

f(xk) — f* =~ O(1/k)

FISTA: global sublinear convergence®® f(x¥) — f* ~ O(1/k?)

Alternating-direction method /split Bregman: no known rate of
convergence for ¢1 better than O(1/k)

Accelerated linearized Bregman®®: O(1/k?)
Linearized Bregman: O(uX), u < 1, for [|xk — x*|| and f(x) — f*

7Hale, Yin, and Zhang [2008]
8Beck and Teboulle [2009]
%Huang, Ma, and Goldfarb [2011]



Outline

1. Guarantees for recovering sparse solutions
2. Linearized Bregman algorithm and its global geometric convergence

3. Numerical performance with 2nd-order information



Much faster convergence

e Dual is differentiable, so we can apply gradient—based techniques

200sher, Mao, Dong, and Yin [2010]
21Barzilai and Borwein [1988]
22Zhang and Hager [2004]

23Lju and Nocedal [1989]



Much faster convergence

e Dual is differentiable, so we can apply gradient—based techniques

e Primal x¥ can be recovered from dual y*:

x = A(ATyk — PI"OJ[71,1]"(ATyk))

200sher, Mao, Dong, and Yin [2010]
21Barzilai and Borwein [1988]
22Zhang and Hager [2004]

23Lju and Nocedal [1989]



Much faster convergence

e Dual is differentiable, so we can apply gradient—based techniques
e Primal x¥ can be recovered from dual y*:

x* 1= A(ATy¥ — Proj__, 1p(ATy"))
Numerically compare

(1) Original linearized Bregman (dual grad descent)

(2) (1) + Kicking®®
(3) (2) + BB step? + non-monotone?? line search
(4)

Limited-memory BFGS or L-BFGS?® (only use last 5 gradients)

The ADM approach by Yang, Moller, and Osher [2011] has impressive
results but haven't been compared yet.

200sher, Mao, Dong, and Yin [2010]
21Barzilai and Borwein [1988]
22Zhang and Hager [2004]

23Lju and Nocedal [1989]



Test on a Gaussian Sparse Signal

5 Error of x4

o Error of y¥
10° 10
E original original
10" = = = kicking 10" = = = kicking
i line search line search
i H — L-BF( — L-BF(
10° | 10%
[
\
10" \ 10°

2-norm error
5,
2-norm error
5,

10 10°
10* 10°
10° 107
10° . - - - - - - - - 10° . - - . - - - - -
0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000

iteration iteration



Test on a 1 Sparse Signal

2-norm error

Error of ¥

original
kicking
line search
LBFGS

50 100 150 200
iteration

2-norm error

Error of y®

original
kicking
line search
LBFGS

100

iteration

150



Summary

Conclusions
» (L14alLS) can still give sparse solutions (unlike the Huber-norm)

» Dual of (L1+«lLS) is differentiable, grad-descent has global linear
convergence

» Using 2nd-order information significantly accelerates convergence

Current and Future Work

v

More effective smoothing?

v

Develop much faster algorithms using 2nd-order info for ¢; and
problems exploiting low-dimensional structures

v

Upgrade existing codes with alLS

v

More ...
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